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Abstract

Bayesian model averaging (BMA) is a statistical way of postprocessing forecast ensembles to
create predictive probability density functions (PDFs) for weather quantities. It represents
the predictive PDF as a weighted average of PDFs centered on the individual bias-corrected
forecasts, where the weights are posterior probabilities of the models generating the forecasts
and reflect the forecasts’ relative contributions to predictive skill over a training period. It
was developed initially for quantities whose PDFs can be approximated by normal distribu-
tions, such as temperature and sea-level pressure. BMA does not apply in its original form to
precipitation, because the predictive PDF of precipitation is nonnormal in two major ways:
it has a positive probability of being equal to zero, and it is skewed. Here we extend BMA
to probabilistic quantitative precipitation forecasting. The predictive PDF corresponding to
one ensemble member is a mixture of a discrete component at zero and a gamma distribu-
tion. Unlike methods that predict the probability of exceeding a threshold, BMA gives a
full probability distribution for future precipitation. The method was applied to daily 48-h
forecasts of 24-h accumulated precipitation in the US Pacific Northwest in 2003–2004 using
the University of Washington mesoscale ensemble. It yielded predictive distributions that
were calibrated and sharp. It also gave probability of precipitation (PoP) forecasts that were
much better calibrated than those based on consensus voting of the ensemble members.
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1 Introduction

A number of existing methods generate probabilistic precipitation forecasts based on deter-

ministic forecasts. Regression techniques such as model output statistics (MOS) can be used

to generate probabilities of exceeding thresholds (Glahn and Lowry 1972; Klein and Glahn

1974; Bermowitz 1975; Charba 1998; Antolik 2000), or to generate quantiles of expected

precipitation (Bremnes 2004). Applequist et al. (2002) found that logistic regression can

outperform standard regression, and Hamill et al. (2004) found that this can be further

refined by using logistic regression on power-transformed forecasts.

These methods, however, do not yield a full predictive probability density function (PDF);

rather, they give only probabilities for certain specific events. They also do not make use

of all the information available in an ensemble forecast. Ensemble forecasts can give an

indication of uncertainty, and a relationship between forecast errors and ensemble spread

has been established for several ensemble systems (Buizza et al. 2005). Anderson (1996)

suggested using the ensemble member forecasts to partition the real line into a series of

bins, assuming each bin to be an equally likely range of possible outcomes, and probabilities

uniformly distributed within the inner bins. Hamill and Colucci (1998) noted that this

approach is not well-calibrated, with far too many observations appearing at the extreme

bins. They proposed an alternative method, fitting gamma distributions with parameters

based on corrected ensembles or transformations of the ensemble mean. While they reported

good results, it is not obvious how to obtain calibrated probability of precipitation (PoP)

forecasts using this approach.

Bayesian model averaging (BMA) was introduced by Raftery et al. (2005) as a statistical

postprocessing method for producing probabilistic forecasts from ensembles in the form of

predictive PDFs. The BMA predictive PDF of any future weather quantity of interest is

a weighted average of PDFs centered on the individual bias-corrected forecasts, where the

weights are equal to posterior probabilities of the models generating the forecasts and reflect

the forecasts’ contributions to overall forecasting skill over a training period. The original

development of BMA by Raftery et al. (2005) was for weather quantities whose predictive

PDFs are approximately normal, such as temperature and sea-level pressure.

BMA in the form described by Raftery et al. (2005) does not apply directly to precipi-

tation. This is because the predictive distribution of precipitation is far from normal. It is

nonnormal in two major ways: it has a positive probability of being equal to zero, and when

it is not zero the predictive density is skewed. Here we extend BMA to precipitation by mod-

eling the predictive distribution for a given ensemble member as a mixture of a point mass at

zero and a gamma distribution; the BMA PDF is then itself a mixture of such distributions.
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In our experiments we show that BMA was calibrated and sharp for the period we consid-

ered. This indicates that BMA has the potential to provide both calibrated PoP forecasts,

and calibrated and sharp probabilistic quantitative precipitation forecasts (PQPF).

In section 2 we review the BMA technique and describe our extension of it to precip-

itation. Then in section 3 we give results for daily 48-h forecasts of 24-h accumulated

precipitation over the US Pacific Northwest in 2003–2004 based on the 9-member University

of Washington mesoscale ensemble (Grimit and Mass 2002; Eckel and Mass 2005). Through-

out the paper we use illustrative examples drawn from these data. Finally, in section 4 we

discuss possible improvements to the method.

2 Methods

2.1 Bayesian model averaging

Bayesian model averaging (Leamer 1978; Kass and Raftery 1995; Hoeting et al. 1999) was

originally developed as a way to combine inferences and predictions from multiple statistical

models, and was applied to statistical linear regression and related models in social and

health sciences. Raftery et al. (2005) extended BMA to ensembles of dynamical models and

showed how it can be used as a statistical postprocessing method for forecast ensembles,

yielding calibrated and sharp predictive PDFs of future weather quantities.

In BMA for ensemble forecasting, each ensemble member forecast, fk, is associated with

a conditional PDF, hk(y|fk), which can be interpreted as the PDF of the weather quantity

y given fk, conditional on fk being the best forecast in the ensemble. The BMA predictive

PDF is then

p(y|f1, . . . , fK) =
K∑

k=1

wk hk(y|fk), (1)

where wk is the posterior probability of forecast k being the best one, and is based on forecast

k’s relative performance in the training period. The wk’s are probabilities and so they are

nonnegative and add up to 1, that is,
∑K

k=1 wk = 1.

2.2 Discrete-continuous model

For temperature and sea-level pressure, the conditional PDF can be fit reasonably well

using a normal distribution centered at a bias-corrected forecast, as shown by Raftery et al.

(2005). For precipitation, however, the normal distribution is not appropriate. Figure 1

illustrates the distribution of precipitation accumulation among the verifying observations

in our database of ensemble forecasts over the Pacific Northwest in 2003 and 2004, stratified

by the accumulation amount predicted by the centroid member (Eckel and Mass 2005) of
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the forecast ensemble. These histograms show two important aspects of the distribution of

precipitation. First, accumulated precipitation was zero in a large number of cases. Second,

for the cases on which the accumulated precipitation was not zero, the distributions were

highly skewed. The normal distribution does not fit data of this kind, and to extend BMA

to precipitation we must develop a model for the conditional PDF hk(y|fk) in (1) that takes

account of these facts.

Our model for hk(y|fk) is in two parts. The first part specifies PoP as a function of

the forecast fk, given that fk is the best ensemble member forecast for that day. We follow

Hamill et al. (2004) in using logistic regression with a power transformation of the forecast

as predictor variable. Hamill et al. (2004) recommended using the fourth root of the forecast

as predictor variable, but we found that using the cube root was adequate. All else equal, it

seems desirable to use a predictor variable that is as close to the original forecast as possible,

and the cube root is closer than the fourth root, and so is preferable if its performance is

adequate. We found that this model did not provide the best possible predictions when the

forecast was equal to zero, and so we included a second predictor, δk, equal to 1 if fk = 0

and equal to 0 otherwise. Our logistic regression model then is

logit P (y = 0|fk) ≡ log
P (y = 0|fk)

P (y > 0|fk)
= a0 + a1f

1/3
k + a2δk. (2)

The probability P (y > 0|fk) is the probability of nonzero precipitation given the forecast fk,

if fk is the best ensemble member forecast for that day.

The second part of our model specifies the PDF of the amount of precipitation given

that it is not zero. Previous authors have fit gamma distributions to precipitation amounts

(Coe and Stern 1982; Stern and Coe 1984; Wilks 1990; Hamill and Colucci 1998; Wilson

et al. 1999), as they can fit skewed data and are quite flexible, and we also took the gamma

distribution as our starting point. The gamma distribution with shape parameter α and

scale parameter β has the PDF

g(y) =
1

βαΓ(α)
yα−1 exp(−y/β)

for y > 0 and g(y) = 0 for y ≤ 0. The mean of this distribution is µ = αβ, and its variance

is σ2 = αβ2. We found that fitting gamma distributions to the raw observed accumulation

amounts did not give an especially good fit. We found the same issues with high values

being fit poorly that Hamill and Colucci (1998) reported. In light of this, rather than fitting

the gamma distribution to the observed precipitation amounts themselves, we fit the gamma

distribution to powers of the observed values. We found that the best fit was achieved when

the gamma distribution was fit to the cube root of the observed precipitation amounts.
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Figure 1: Histograms of observed precipitation accumulation: (a) for cases on which the
centroid member forecast of precipitation was zero, (b) for cases on which it was between 6.4
and 9.6 hundredths of an inch, (c) for cases on which it was greater than 59.4 hundredths of
an inch, and (d) for all cases.

4



It remains to specify how the parameters of the gamma distribution depend on the

forecast. We found that the means and variances of the fitted gamma distributions were

both approximately linear as functions of the original forecasted accumulation amount. We

therefore fit the mean and variance of the gamma distribution as linear functions of the

forecasted amount. For the mean, we added an additional predictor variable equal to 1

when the forecast was zero and equal to 0 otherwise, and found that this improved the fit.

Putting these components together, we get the following model for the conditional PDF

of precipitation accumulation, given that forecast fk is best:

hk(y|fk) = P (y = 0|fk) I[y = 0] + P (y > 0|fk) gk(y|fk) I[y > 0],

where y is the cube root of the precipitation accumulation, I[y = 0] is an indicator function

equal to 1 if y = 0 and equal to 0 otherwise, and P (y = 0|fk) is specified in (2). The

conditional PDF gk(y|fk) of the cube root precipitation amount y given that it is positive is

a gamma distribution with PDF

gk(y|fk) =
1

βαk
k Γ(αk)

yαk−1 exp(−y/βk).

The parameters of the gamma distribution depend on the original forecast, fk, through the

relationships

µk = b0k + b1kfk + b2kδk

and

σ2
k = c0k + c1kfk, (3)

where µk = αkβk is the mean of the distribution, σ2
k = αkβ

2
k is its variance, and δk is equal

to 1 if fk = 0 and equal to 0 otherwise.

2.3 BMA for discrete-continuous models

For the variances, we observed that the parameters c0k and c1k in (3) did not vary much from

one model to another, and so we restricted the variance parameters to be constant across

all ensemble members. This simplifies the model by reducing the number of parameters to

be estimated, makes parameter estimation computationally easier, and reduces the risk of

overfitting. It is analagous to the assumption of equal variances in Raftery et al. (2005).

Our final BMA model (1) for the predictive PDF of the weather quantity, y, here the

cube root of precipitation accumulation, is thus

p(y|f1, . . . , fK) =
K∑

k=1

wk

(
P (y = 0|fk)I[y = 0] + P (y > 0|fk) gk(y|fk) I[y > 0]

)
, (4)
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where wk is the posterior probability of ensemble member k being best, fk is the original

forecast from this member,

logit P (y = 0|fk) = a0k + a1kf
1/3
k + a2kδk

with δk equal to 1 if fk = 0 and equal to 0 otherwise, and

gk(y|fk) =
1

βαk
k Γ(αk)

yαk−1 exp(−y/βk).

The parameters αk = µ2
k/σ

2
k and βk = σ2

k/µk of the gamma distribution depend on fk through

the relationships

µk = b0k + b1kfk + b2kδk

and

σ2
k = c0 + c1fk,

that specify the mean and the variance of the distribution, respectively. While (4) is stated

in terms of the cube root of the precipitation amount, it is easy to express the resulting

probability statements in terms of the original amounts.

2.4 Parameter estimation

Parameter estimation is based on data from a training period, which we take here to be

the 25 days of forecast and observation data preceding initialization, following Raftery et al.

(2005). The training period is a sliding window, and the parameters are reestimated for

each new initialization period. The required data consist of forecast-observation pairs from

a collection of observation sites for each of the ensemble members.

The parameters a0k, a1k, and a2k are member-specific, and they are determined separately

for each ensemble member, using the observations and the forecasts from that ensemble

member only. They are estimated by logistic regression with precipitation/no precipitation

as the dependent variable, and f
1/3
k and δk as the two predictor variables.

The parameters b0k, b1k, and b2k are also member-specific, and are determined by linear

regression with the nonzero precipitation observations as cases, the cube root of the amount

of precipitation as the dependent variable, and two predictor variables, the original forecast

and the indicator variable for the forecast being equal to zero.

We estimate wk, k = 1, . . . , K; c0; and c1 by the maximum likelihood technique (Fisher

1922) from the training data. The likelihood function is defined as the probability of the

training data given the parameters to be estimated, viewed as a function of the parameters.

The maximum likelihood estimator is the value of the parameter vector that maximizes the
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likelihood function, that is, the value of the parameter vector under which the observed data

were most likely to have been observed.

It is convenient to maximize the logarithm of the likelihood function (or log-likelihood

function) rather than the likelihood function itself, for reasons of both algebraic simplic-

ity and numerical stability; the same parameter value that maximizes one also maximizes

the other. Assuming independence of forecast errors in space and time, the log-likelihood

function for the BMA model (4) is

`(w1, . . . , wK ; c0; c1) =
∑
s,t

log p(yst|f1st, . . . , fKst), (5)

where the summation is over values of s and t that index observations in the training set

by space and time, and p(yst|f1st, . . . , fKst) is given by (4), with subscripts s and t added to

y and fk. This cannot be maximized analytically, and instead we maximize it numerically

using the expectation-maximization, or EM algorithm (Dempster et al. 1977; McLachlan

and Krishnan 1997).

The EM algorithm is a method for finding the maximum likelihood estimator when the

problem can be recast in terms of unobserved quantities such that, if we knew what they

were, the estimation problem would be straightforward. The BMA model (4) is a finite

mixture model (McLachlan and Peel 2000). Here we introduce the unobserved quantities

zkst, where zkst = 1 if ensemble member k is the best forecast for verification site s and time

t, and zkst = 0 otherwise. For each (s, t), only one of {z1st, . . . , zKst} is equal to 1; the others

are all zero.

The EM algorithm is iterative, and alternates between two steps, the E (or expectation)

step, and the M (or maximization) step. It starts with an initial guess for the parameters. In

the E step, the zkst are estimated given the current guess for the parameters; the estimates

of the zkst are not necessarily integers, even though the true values are 0 or 1. In the M step,

the parameters are reestimated given the current values of the zkst.

For the BMA model (4), the E step is

ẑ
(j+1)
kst =

w
(j)
k p(j)(yst|fkst)∑K

l=1 w
(j)
l p(j)(yst|flst)

,

where the superscript j refers to the jth iteration of the EM algorithm, and thus w
(j)
k refers to

the estimate of wk at the jth iteration, and p(j)(yst|fkst) is p(yst|fkst) as defined in (4), using

the estimates of c0 and c1 from the jth iteration. The M step then consists of estimating the

wk, c0, and c1 using as weights the current estimates of zkst, namely ẑ
(j+1)
kst . Thus

w
(j+1)
k =

1

n

∑
s,t

ẑ
(j+1)
kst ,

7



where n is the number of cases in the training set, that is, the number of distinct values

of (s, t). There are not analytic solutions for the maximum likelihood estimates of the

parameters c0 and c1, and so they must be estimated numerically by optimizing (5) using

the current estimates of the wk parameters.

The E and M steps are then iterated to convergence, which we defined as changes no

greater than some small tolerances in any of the log-likelihood, the parameter values, or

the ẑ
(j)
kst in one iteration. The log-likelihood is guaranteed to increase at each EM iteration

(Wu 1983), which implies that in general it converges to a local maximum of the likelihood.

Convergence to a global maximum cannot be guaranteed, so the solution reached by the

algorithm can be sensitive to the starting values. Choosing the starting value for day t + 1

to be equal to the converged estimate for day t usually leads to a good solution.

2.5 Examples

To illustrate how the method works, we show two examples. Our first example is from

station KRNT on 19 May 2003, in Renton, Washington. Table 1 shows the raw ensemble

forecasts, the logistic regression PoP results, the BMA results and the verifying observation.

All nine ensemble members predicted no rain, but it actually did rain. The BMA predictive

PDF is shown in Figure 2(a); the BMA 90th percentile upper bound was slightly above the

observed amount, even though the forecast probability of rain was low (below 20%).

Our second example is from station KPWT on 26 January 2003, in Bremerton, Washing-

ton. Again, Table 1 shows the raw ensemble forecasts, logistic regression PoP results, BMA

results and the observed value. The BMA deterministic forecast, that is, is the median of

the BMA predictive PDF, was about 3 hundredths of an inch. The BMA predictive PDF

itself is shown in Figure 2(b). The observation is far outside the ensemble range, but it is

contained within the BMA upper bound.

Spatial displays of the BMA PoP forecast, and of the BMA deterministic forecast and

90th percentile upper bound for the precipitation amount, are shown in Figures 3 and 4

for these two dates. Spatial displays of the PoP seem potentially useful in communicating

probability forecasts to the general public, and might assist in the use and interpretation of

the forecasts (Gigerenzer et al. 2005).

3 Results

BMA was applied to 48-h forecasts of 24-h precipitation accumulation in the US Pacific

Northwest for the 0000 UTC cycle over the two-year period of January 1, 2003 through De-

cember 31, 2004, using the 9-member University of Washington mesoscale ensemble (Eckel

8



Table 1: Raw ensemble, logistic regression PoP and BMA forecasts for two example stations.
The quantitative precipitation forecasts and observations are given in hundredths of an inch.
Descriptions of the University of Washington ensemble member acronyms can be found in
Eckel and Mass (2005).

Ensemble Member CENT AVN CMCG ETA GASP JMA NGPS TCWB UKMO

Station KRNT on 19 May 2003
BMA Weight 0.00 0.42 0.00 0.22 0.18 0.16 0.00 0.02 0.00
Member PoP 0.20 0.16 0.22 0.18 0.18 0.22 0.23 0.24 0.19
BMA PoP 0.18
Member Forecast 0 0 0 0 0 0 0 0 0
BMA Forecast 0
BMA Upper Bound 4
Observation 4

Station KPWT on 26 January 2003
BMA Weight 0.00 0.20 0.33 0.00 0.00 0.00 0.23 0.24 0.00
Member PoP 0.45 0.62 0.75 0.60 0.41 0.40 0.69 0.40 0.71
BMA PoP 0.63
Member Forecast 2 8 10 4 1 1 11 1 12
BMA Forecast 3
BMA Upper Bound 34
Observation 26
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Figure 2: BMA-fitted PDFs for (a) station KRNT on 19 May 2003 and (b) station KPWT
on 26 January 2003. The thick vertical line at zero represents the BMA estimate of the
probability of no precipitation, and the upper solid curve is the BMA PDF of the precipitation
amount given that it is nonzero. The lower curves are the components of the BMA PDF.
The dashed vertical line represents the 90th percentile upper bound of the BMA PDF, the
dashed horizontal line is the respective prediction interval; the dots represent the ensemble
member forecasts; and the solid vertical line represents the verifying observation.
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Figure 3: BMA PoP forecast for (left) 19 May 2003 and (right) 26 January 2003.

and Mass 2005). The forecasts were produced for observation locations by bilinear interpola-

tion from the forecast grids. The observations were subject to the quality control procedures

described by Baars (2005). Following the recommendations of Raftery et al. (2005), a 25-day

training period was used.

We begin with a discussion of the PoP forecasts. Figure 5 shows the respective reliability

diagram (Wilks 2006, section 7.4.4). As can be seen, BMA produced well-calibrated results,

while a consensus vote from the raw ensemble produced uncalibrated results. Table 2 shows

that the Brier score (Wilks 2006, p. 284) for the BMA PoP forecasts was better than that

for either sample climatology or consensus voting.

In assessing probabilistic forecasts of quantitative precipitation, we follow Gneiting et al.

(2005) and aim to maximize the sharpness of the predictive PDFs, subject to calibration.

Calibration refers to the statistical consistency between the forecast PDFs and the obser-

vations, and in the context of precipitation forecasts was discussed by Krzysztofowicz and

Sigrest (1999). To assess calibration, we consider Figure 6, which shows the verification rank

histogram for the ensemble forecasts and the probability integral transform (PIT) histogram

for the BMA forecast distributions. The verification rank histogram illustrates the lack of

calibration in the raw ensemble, similar to results reported by Hamill and Colucci (1998),

Eckel and Walters (1998) and Mullen and Buizza (2001) for other ensembles. The PIT his-

togram is a continuous analogue of the verification rank histogram (Gneiting et al. 2005),

and it shows that the BMA forecast distributions were considerably better calibrated than

the raw ensemble. For the verification rank histogram, there were incidences where the ob-

11



(a)

(b)

Figure 4: (a) BMA deterministic forecast and (b) BMA 90th percentile upper bound forecast
for (left) 19 May 2003 and (right) 26 January 2003, in hundredths of an inch.
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Figure 5: Reliability diagram of binned PoP forecast versus observed relative frequency of
precipitation, for consensus voting of the raw ensemble (crosses) and BMA (circles).
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served value was zero (no precipitation), and one or more forecasts were also zero. To obtain

a rank in these situations, a ranking was randomly chosen between zero and the number

of forecasts that equaled zero. To calculate the values for the PIT histogram, each BMA

cumulative distribution function was evaluated at its corresponding observation. In the case

of an observation of zero, a value was randomly drawn between zero and the probability of

no precipitation.

Table 3 shows the empirical coverage of lower 50% and 90% prediction intervals, and the

results echo what we saw in the histograms. Sample climatology was perfectly calibrated,

as expected, while the raw ensemble was substantially uncalibrated. The BMA intervals

were close to being calibrated. The table also shows the average width of the prediction

intervals, which characterizes the sharpness of the forecast distributions. The BMA PDFs

produced narrower intervals than the raw ensemble forecasts for both intervals considered,

and narrower intervals than climatology for 90% intervals.

Scoring rules provide summary measures of predictive performance that address calibra-

tion and sharpness simultaneously. A particularly attractive scoring rule for probabilistic

forecasts of a scalar variable is the continuous ranked probability score (CRPS), which gener-

alizes the mean absolute error (MAE), and can be directly compared to the latter (Gneiting

et al. 2005; Wilks 2006, section 7.5.1). Table 2 shows MAE and CRPS values for sample

climatology, raw ensemble forecasts and BMA forecasts, all in units of hundredths of an inch.

A deterministic forecast can be created from the BMA forecast by finding the median of the

predictive PDF, and the MAE refers to this forecast. Similarly, we show the MAE for the

median of the sample climatology and the median of the 9-member forecast ensemble, with

the results for BMA being by far the best. We also computed MAE values for deterministic

forecasts based on the respective means; these were much higher than the MAE values for

the median forecasts, as is generally true when the predictive PDFs are highly skewed. The

results for the CRPS were similar, in that the BMA forecast substantially outperformed the

others.

Furthermore, Table 2 shows Brier skill scores (Wilks 2006, p. 285) at various thresholds

for ensemble consensus voting, taking PoP to be equal to the proportion of ensemble members

that predict precipitation, for BMA forecasts and for logistic regression results based on the

cube root of the ensemble mean, all relative to sample climatology.

4 Discussion

We have shown how to apply BMA to precipitation forecasts. This provides a statistical

postprocessing method for ensembles that yields a full predictive distribution for quantita-
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Figure 6: (a) Verification rank histogram for raw ensemble forecasts, and (b) PIT histogram
for BMA forecast distributions of precipitation accumulation.

15



Table 2: Mean absolute error (MAE), continuous ranked probability score (CRPS) and
Brier skill score (BSS) for precipitation forecasts. The thresholds, MAE and CRPS values
are given in hundredths of an inch, and the MAE refers to the deterministic forecast given
by the median of the respective forecast distribution.

Score MAE CRPS BSS BSS BSS BSS BSS
Threshold 0 5 50 100 200
Sample Climatology 8.7 7.8
Ensemble Forecast 9.4 7.6 0.08 0.03 −0.01 0.05 0.11
BMA Forecast 7.4 5.1 0.38 0.36 0.28 0.24 0.16
Logistic Regression 0.37 0.37 0.29 0.25 0.13

Table 3: Coverage and average width of lower 50% and 90% prediction intervals for precipi-
tation accumulation, in percent and hundredths of an inch, respectively.

Interval 50% 90% 50% 90%
Coverage Width

Sample Climatology 50.0 90.0 0.0 24.0
Ensemble Forecast 68.5 92.9 11.8 24.2
BMA Forecast 50.5 91.2 3.9 22.2
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tive precipitation. The predictive distribution has two components: the probability of zero

precipitation, and the PDF for the precipitation accumulation given that it is greater than

zero. It thus provides both PoP and PQPF in a unified form. In our experiments with

the University of Washington ensemble, the BMA forecast PDFs were better calibrated and

sharper than the raw ensemble, which was uncalibrated. The BMA median forecast had

lower MAE than the ensemble median, and the BMA forecast PDFs had substantially lower

CRPS than the raw ensemble.

BMA PoP forecasts at various thresholds had better Brier skill scores than the ensemble

proportion forecasts. Power-transformed logistic regression based on the ensemble mean, as

suggested by Hamill et al. (2004), produced Brier skill scores comprable to BMA. BMA offers

the added advantage, due to giving a full predictive PDF, of being able to give probabilities

of exceeding arbitrary precipitation amounts, rather than having to create a new logistic

regression model for each threshold of interest.

Various improvements to the method may be possible. The BMA parameters were es-

timated using data on observations from the entire Pacific Northwest, and a more local

approach, for example partitioning the region into climatologically homogeneous subregions,

or fitting BMA locally for each location using only observations within a given radius, might

perform better. This latter possibility was suggested by Eric Grimit and Clifford Mass. Our

method of estimation assumes independence of forecast errors in space and time. This is

unlikely to hold, but it is also unlikely to have much effect on the results, because we are

focusing here on the predictive distribution of a single scalar quantity. A calibrated proba-

bilistic forecasting method for temperature and sea-level pressure that does take account of

spatial dependence was proposed by Gel et al. (2004), and it would be interesting to extend

this to precipitation. Herr and Krzysztofowicz (2005) proposed a generic bivariate probabil-

ity model for rainfall accumulation in space and gave a critique of the simulation technique

of Seo et al. (2000), which generates multiple realizations of downscaled precipitation fields

from PQPF.

Our use of a 25-day training period was based on experience with temperature and sea-

level pressure, but it may be possible to choose a better training period for the forecasting

task at hand, using the kind of experiment reported by Raftery et al. (2005). Hamill et al.

(2004) recommended the use of reforecasts from past years computed on the same basis as the

current ensemble forecasts. If such reforecasts were available, it seems likely that expanding

the training period to include days from the same season in previous years would improve

performance. The University of Washington ensemble is frequently updated, however, and

as a result prior forecasts were not available to us.

Our experiments were carried out for 24-h precipitation accumulation, and other experi-
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ments not reported here suggest that the method also performs well for other accumulation

durations, such as 3 hours, 6 hours or 12 hours. This would have to be verified for the

particular forecasting task at hand.

Probabilistic forecasts using BMA based on the University of Washington mesoscale

ensemble prediction system are currently being produced in real time for temperature and

precipitation. They are available online at http://bma.apl.washington.edu. This website

provides median forecasts, upper bound forecasts, and forecasts of exceeding thresholds for

precipitation accumulation. We apply the BMA technique directly on the model grid, and

the website provides the ability to look at the BMA PDF for any grid cell in the forecast

domain.
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